California Antibiogram Project: Aggregate Susceptibility Data of Selected Pathogens, 2010 | Data shown as % susceptible | Cefepime | Oxacillin | Cefotaxime/
Ceftriaxone ¹ | Ceftazidime | Imipernem/
Meropenem/
Doripenem² | Ciprofloxacin/
Levofloxacin | Clindamycin | Tetracycline/
Doxycycline/
Minocycline | Trimethoprim/
Sulfamethoxazole | Vancomycin | Rifampin | Gentamicin/
Tobramycin | Amikacin | Piperacillin/
Tazobactam | |---|----------|-----------|---|-------------|--|--------------------------------|-------------|--|-----------------------------------|------------|----------|---------------------------|----------|-----------------------------| | Acinetobacter baumannii | | | | | 51.3 | | | | | | | | | | | (n=1,649)
Escherichia coli ^{3,4}
(n=135,213) | | | 95.3 ⁵ | | | 82.4 | | | | | | | | | | Klebsiella spp. 6,7
(n=24,611) | | | 94.7 ⁸ | | 94.9 | | | | | | | | | | | Pseudomonas aeruginosa
(n=17,879) | 84.6 | | | | 86.2 | 71.1 | | | | | | 77.2 | 80.4 | 88.5 | | Staphylococcus aureus (n=63,079) | | 55.9 | | | | | 76.9 | 85.9 | 98.1 | | 81.0 | | | | | Enterococcus spp. ⁹ (n=26,836) | | | | | | | | | | 82.3 | | | | | | Enterobacter cloacae ¹⁰ (n=5,563) | 97.2 | | | 77.9 | 98.9 | 94.1 | | | | | | | | | ¹ 20.3% of laboratories reported implementing the revised Clinical Laboratory Standards Institute (CLSI) breakpoints for Cefotaxime and/or Ceftriaxone and *Enterobacteriaceae* as first described in M100-S20 (January 2010) and listed in current standard, M100-S21 (January 2011). ² 30.5% of laboratories reported implementing the revised CLSI breakpoints for Doripenem, Imipenem and/or Meropenem and *Enterobacteriaceae* as first described in M100-S20U (June 2010) and listed in current standard, M100-S21 (January 2011). ³ 89.7% of laboratories used automatic broth dilution as the primary testing methodology for *Escherichia coli*. ⁴ 81.4% of laboratories routinely perform phenotypic tests (eg. double-disk diffusion or other method) for extended-spectrum β-lactamase (ESBL) production on all *Escherichia coli* that are suspicious for ESBL production. ⁵ 89.8% of laboratories provided data for *Escherichia coli* and included isolates that are classified as resistant to Cefotaxime and/or Ceftriaxone because of a positive ESBL test, regardless of minimum inhibitory concentration (MIC). ⁶ 91.4% of laboratories used automatic broth dilution as the primary testing methodology for *Klebsiella* spp. ⁷ 83.1% of laboratories routinely performed phenotypic tests (eg. double-disk diffusion or other method) for ESBL production on all *Klebsiella pneumonia* that are suspicious for ESBL production. ⁸ 89.8% of laboratories provided data for *Klebsiella* spp. and included isolates that are classified as resistant to Cefotaxime and/or Ceftriaxone because of a positive ESBL test, regardless of MIC. ⁹ 89.5% of laboratories used automatic broth dilution as the primary testing methodology for *Enterococcus* spp. ¹⁰ 90.6% of laboratories used automatic broth dilution as the primary testing methodology for *Enterobacter cloacae*.